Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
FEBS Open Bio ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719785

RESUMO

Glioblastoma recruits various nontransformed cells from distant tissues. Although bone marrow-derived mesenchymal stem cells (MSCs) have been observed migrating to glioblastoma, the underlying mechanism driving MSC migration toward glioblastoma remains unclear. Tumor vascularity is critical in the context of recurrent glioblastoma and is closely linked to the expression of stromal cell-derived factor-1 (SDF-1). We demonstrated that cadherin-6 mediated MSC migration both toward SDF-1 and toward glioblastoma cells. Cadherin-6 knockdown resulted in the downregulation of MSCs capacity to migrate in response to SDF-1. Furthermore, MSCs with cadherin-6 knockdown exhibited impaired migration in response to conditioned media derived from glioblastoma cell lines (U87 and U373) expressing SDF-1, thus simulating the glioblastoma microenvironment. Moreover, MSCs enhanced the vasculogenic capacity of U87 cells without increasing the proliferation, cancer stem cell characteristics, or migration of U87. These results suggest that the current strategy of utilizing MSCs as carriers for antiglioblastoma drugs requires careful examination. Furthermore, cadherin-6 may represent a novel potential target for controlling the recruitment of MSCs toward glioblastoma.

2.
Cell Death Discov ; 10(1): 19, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212369

RESUMO

Mesenchymal stem cells are recruited from the bone marrow into breast tumors, contributing to the creation of a tumor microenvironment that fosters tropism for breast tumors. However, the intrinsic mechanisms underlying the recruitment of bone marrow-derived mesenchymal stem cells (MSCs) into the breast tumor microenvironment are still under investigation. Our discoveries identified zonula occludens-1 (ZO-1) as a specific intrinsic molecule that plays a vital role in mediating the collective migration of MSCs towards breast tumor cells and transforming growth factor beta (TGF-ß), which is a crucial factor secreted by breast tumor cells. Upon migration in response to MDA-MB-231 cells and TGF-ß, MSCs showed increased formation of adherens junction-like structures (AJs) expressing N-cadherin and α-catenin at their cell-cell contacts. ZO-1 was found to be recruited into the AJs at the cell-cell contacts between MSCs. Additionally, ZO-1 collaborated with α-catenin to regulate AJ formation, dependently on the SH3 and GUK domains of the ZO-1 protein. ZO-1 knockdown led to the impaired migration of MSCs in response to the stimuli and subsequent downregulation of AJs formation at the cell-cell contacts during MSCs migration. Overall, our study highlights the novel role of ZO-1 in guiding MSC migration towards breast tumor cells, suggesting its potential as a new strategy for controlling and re-engineering the breast tumor microenvironment.

3.
Mol Ther Nucleic Acids ; 31: 398-410, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36817727

RESUMO

Alternative splicing of microexons (3-30 base pairs [bp]) is involved in important biological processes in brain development and human cancers. However, understanding a splicing process of non-3x bp microexons is scarce. We showed that 4 bp microexon of mitochondrial pyruvate carrier1 (MPC1) is constitutively included in mRNA. Based on our studies with minigene and exon island constructs, we found the strong exon definition region in the proximal introns bordering MPC1 microexon. Ultimately, we defined a nucleotide fragment from the 3'ss 67 bp of MPC1 microexon to the 5'ss consensus sequence, as a core exon island, which can concatenate its microexon and neighboring exons by splicing. Furthermore, we showed that insertion of the core exon island into a target exon or intron induced skip the target exon or enhance the splicing of an adjacent exon, respectively. Collectively, we suggest that the exon island derived from MPC1 microexon modifies genuine splicing patterns depending on its position, thereby providing insights on strategies for splicing-mediated gene correction.

4.
Br J Cancer ; 124(3): 634-644, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33071283

RESUMO

BACKGROUND: Most cancer cells employ the Warburg effect to support anabolic growth and tumorigenesis. Here, we discovered a key link between Warburg effect and aberrantly activated Wnt/ß-catenin signalling, especially by pathologically significant APC loss, in CRC. METHODS: Proteomic analyses were performed to evaluate the global effects of KYA1797K, Wnt/ß-catenin signalling inhibitor, on cellular proteins in CRC. The effects of APC-loss or Wnt ligand on the identified enzymes, PKM2 and LDHA, as well as Warburg effects were investigated. A linkage between activation of Wnt/ß-catenin signalling and cancer metabolism was analysed in tumour of Apcmin/+ mice and CRC patients. The roles of PKM2 in cancer metabolism, which depends on Wnt/ß-catenin signalling, were assessed in xenograft-tumours. RESULTS: By proteomic analysis, PKM2 and LDHA were identified as key molecules regulated by Wnt/ß-catenin signalling. APC-loss caused the increased expression of metabolic genes including PKM2 and LDHA, and increased glucose consumption and lactate secretion. Pathological significance of this linkage was indicated by increased expression of glycolytic genes with Wnt target genes in tumour of Apcmin/+ mice and CRC patients. Warburg effect and growth of xenografted tumours-induced by APC-mutated-CRC cells were suppressed by PKM2-depletion. CONCLUSIONS: The ß-catenin-PKM2 regulatory axis induced by APC loss activates the Warburg effect in CRC.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias Colorretais/metabolismo , Genes APC , L-Lactato Desidrogenase/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Hormônios Tireóideos/metabolismo , Efeito Warburg em Oncologia , Via de Sinalização Wnt , Animais , Proteínas de Transporte/genética , Neoplasias Colorretais/genética , Xenoenxertos , Humanos , L-Lactato Desidrogenase/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Neoplasias/genética , Proteômica , Tiazolidinas/farmacologia , Hormônios Tireóideos/genética , Análise Serial de Tecidos , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
5.
Investig Clin Urol ; 60(6): 425-431, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31692952

RESUMO

Purpose: The aim of this study was to determine the suitability of serum prolyl hydroxylase-3 (PHD3) as a diagnostic or monitoring biomarker of renal cell carcinoma (RCC). Materials and Methods: Between October 2013 and March 2015, we prospectively recruited study participants. The RCC group consisted of 56 patients who underwent radical or partial nephrectomy. The control group included 56 healthy kidney donors and 13 patients with benign renal masses. Blood from the RCC patients was sampled prior to surgery and again 1 and 3 months after the operation. Serum PHD3 levels were measured via enzyme-linked immunosorbent assay and compared between RCC patients and controls. Results: RCC patients had higher serum PHD3 levels than controls (0.79±0.17 ng/mL vs. 0.73±0.09 ng/mL, p=0.023), with an area under curve (AUC) of 0.668. With a cutoff value of 0.761 ng/ml, the sensitivity, specificity, positive predictive value, and negative predictive value were 66.1%, 68.1%, 28.8%, and 37.3%, respectively. No significant difference in PHD3 level was observed between healthy kidney donors and patients with benign renal masses. The predictive performance of PHD3 was improved in subgroup analyses of RCC patients with a tumor size >2 cm (n=40) or clear-cell histology (n=44), with AUCs of 0.709 and 0.688, respectively. Among 37 patients with PHD3 levels greater than the cutoff value of 0.761 ng/mL, the postoperative PHD3 levels at 1 and 3 months were significantly lower than the preoperative PHD3 levels (both p<0.001). Conclusions: Serum PHD3 represents a novel RCC biomarker that shows acceptable diagnostic performance.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma de Células Renais/sangue , Carcinoma de Células Renais/diagnóstico , Neoplasias Renais/sangue , Neoplasias Renais/diagnóstico , Pró-Colágeno-Prolina Dioxigenase/sangue , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
6.
J Biol Chem ; 294(35): 12957-12974, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31296660

RESUMO

Transcriptional regulator KAISO plays a critical role in cell cycle arrest and apoptosis through modulation of p53 acetylation by histone acetyltransferase p300. KAISO potently stimulates apoptosis in cells expressing WT p53, but not in p53-mutant or p53-null cells. Here, we investigated how KAISO transcription is regulated by p53, finding four potential p53-binding sites (p53-responsive DNA elements; p53REs) located in a distal 5'-upstream regulatory element, intron 1, exon 2 coding sequence, and a 3'-UTR region. Transient transcription assays of pG5-p53RE-Luc constructs with various p53REs revealed that p53 activates KAISO (ZBTB33) transcription by acting on p53RE1 (-4326 to -4227) of the 5'-upstream region and on p53RE3 (+2929 to +2959) of the exon 2 coding region during early DNA damage responses (DDRs). ChIP and oligonucleotide pulldown assays further disclosed that p53 binds to the p53RE1 and p53RE3 sites. Moreover, ataxia telangiectasia mutated (ATM) or ATM-Rad3-related (ATR) kinase-mediated p53 phosphorylation at Ser-15 or Ser-37 residues activated KAISO transcription by binding its p53RE1 or p53RE3 sites during early DDR. p53RE1 uniquely contained three p53-binding half-sites, a structural feature important for transcriptional activation by phosphorylated p53 Ser-15·Ser-37. During the later DDR phase, a KAISO-mediated acetylated p53 form (represented by a p53QRQ acetyl-mimic) robustly activated transcription by acting on p53RE1 in which this structural feature is not significant, but it provided sufficient KAISO levels to confer a p53 "apoptotic code." These results suggest that the critical apoptosis regulator KAISO is a p53 target gene that is differently regulated by phosphorylated p53 or acetylated p53, depending on DDR stage.


Assuntos
Apoptose , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Células Cultivadas , Humanos , Fosforilação , Fatores de Transcrição/genética
7.
Biochim Biophys Acta Gene Regul Mech ; 1862(8): 771-785, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31271899

RESUMO

Overexpressed Solute Carrier Family 16 Member 3 (SLC16A3, also called MCT4) plays a critical role in hypoxic cancer cell growth and proliferation, by expelling glycolysis-derived lactate across the plasma membrane. However, how SLC16A3 expression is regulated, under hypoxic conditions, is poorly understood. FBI-1, encoded by ZBTB7A, is a proto-oncoprotein. Interestingly, under hypoxic conditions, expression of SLC16A3, and hypoxia-inducible factor-1 (HIF-1), increased gradually, while FBI-1 expression decreased, suggesting a negative correlation between SLC16A3/HIF-1 and FBI-1 expression. Consequently, we hypothesized that FBI-1 might regulate SLC16A3 and/or HIF-1 expression. Transient transfection and transcription assays of SLC16A3 promoter reporter fusion constructs, oligonucleotide-pulldowns, and ChIP assays, showed that HIF-1α activates SLC16A3 by binding to a hypoxia-response element (HRE), while ectopic FBI-1 potently repressed SLC16A3, by binding to both FBI-1-response elements (FREs) and HREs, during hypoxia. Further evidence for this model was downregulation of ZBTB7A, correlated with SLC16A3 upregulation, in hypoxic colon cancer cells. We also investigated how FBI-1 expression is downregulated during hypoxia. The 5'-upstream regulatory region of ZBTB7A contains two NF-κB-binding sites and two HREs. Interestingly, hypoxia activated NF-κB (RelA/p65) and also increased its nuclear translocation. NF-κB repressed ZBTB7A by binding NF-κB-binding elements, and downregulated the repressor FBI-1, thereby increasing SLC16A3 transcription. While transcriptional repression of SLC16A3 by FBI-1 inhibited lactate efflux, repression of ZBTB7A and activation of lactate efflux by NF-κB, increased colon cancer cell growth and proliferation.


Assuntos
Neoplasias do Colo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Células A549 , Hipóxia Celular , Proliferação de Células , Sobrevivência Celular , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HT29 , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores
8.
FEBS Lett ; 593(14): 1763-1776, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31127867

RESUMO

The protein deacetylase SIRT1 is crucial to numerous physiological processes, such as aging, metabolism, and autoimmunity, and is repressed by various transcription factors, including HIC1. Conversely, we found that HIC2, which is highly homologous to HIC1, is a transcriptional activator of SIRT1 due to opposite activity of the intermediate domains of the two homologs. Importantly, this relationship between HIC2 and SIRT1 could be important for cardiac development, where both proteins are implicated. Here, we assessed whether ectopic expression of HIC2, and subsequent upregulation of SIRT1, might decrease apoptosis in H9c2 cardiomyocytes under simulated ischemia/reperfusion (I/R) injury conditions. Our results demonstrate that unlike its structural homolog HIC1, HIC2 is a pivotal transcriptional activator of SIRT1 and, consequently, may protect the heart from I/R injury.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Sirtuína 1/genética , Ativação Transcricional , Proteínas Supressoras de Tumor/metabolismo , Animais , Sequência de Bases , DNA/metabolismo , Células HEK293 , Humanos , Fatores de Transcrição Kruppel-Like/química , Camundongos , Miócitos Cardíacos/metabolismo , Domínios Proteicos , Proteínas Supressoras de Tumor/química , Fatores de Transcrição de p300-CBP/metabolismo
9.
Biochim Biophys Acta Gene Regul Mech ; 1862(6): 643-656, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30959128

RESUMO

Gluconeogenesis is essential for blood glucose homeostasis during fasting and is regulated by various enzymes, which are encoded by gluconeogenic genes. Those genes are controlled by various transcription factors. Zinc finger and BTB domain-containing 7c (Zbtb7c, also called Kr-pok) is a BTB-POZ family transcription factor with proto-oncogenic activity. Previous findings have indicated that Zbtb7c is involved in the regulation of fatty acid biosynthesis, suggesting an involvement also in primary metabolism. We found here that fasting induced Zbtb7c expression in the mouse liver and in primary liver hepatocytes. We also observed that Zbtb7c-knockout mice have decreased blood glucose levels, so we investigated whether Zbtb7c plays a role in gluconeogenesis. Indeed, differential gene expression analysis of Zbtb7c-knockout versus wild type mouse livers showed downregulated transcription of gluconeogenic genes encoding the glucose 6-phosphatase catalytic subunit (G6pc) and phosphoenolpyruvate carboxykinase 1 (Pck1), while Zbtb7c expression upregulated these two genes, under fasting conditions. Mechanistically, we found that when complexed with histone deacetylase 3 (Hdac3), Zbtb7c binds insulin response elements (IREs) within the G6pc and Pck1 promoters. Moreover, complexed Zbtb7c deacetylated forkhead box O1 (Foxo1), thereby increasing Foxo1 binding to the G6pc and Pck1 IREs, resulting in their transcriptional activation. These results demonstrate Zbtb7c to be a crucial metabolic regulator of blood glucose homeostasis, during mammalian fasting.


Assuntos
Jejum , Regulação da Expressão Gênica , Gluconeogênese/fisiologia , Glucose-6-Fosfatase/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco/fisiologia , Animais , Glicemia , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos/biossíntese , Proteína Forkhead Box O1/metabolismo , Gluconeogênese/genética , Glucose/metabolismo , Glucose-6-Fosfatase/metabolismo , Células HEK293 , Células Hep G2 , Hepatócitos/metabolismo , Histona Desacetilases/metabolismo , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Mutagênese Sítio-Dirigida , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Regiões Promotoras Genéticas , Proteínas/genética , Transcriptoma , Dedos de Zinco/genética
10.
J Biol Chem ; 294(1): 299-313, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30409904

RESUMO

Even in the face of physiological DNA damage or expression of the tumor suppressor protein p53, B cell CLL/lymphoma 6 (BCL6) increases proliferation and antagonizes apoptotic responses in B cells. BCL6 represses TP53 transcription and also appears to inactivate p53 at the protein level, and additional findings have suggested negative mutual regulation between BCL6 and p53. Here, using Bcl6-/- knockout mice, HEK293A and HCT116 p53-/- cells, and site-directed mutagenesis, we found that BCL6 interacts with p53 and thereby inhibits acetylation of Lys-132 in p53 by E1A-binding protein p300 (p300), a modification that normally occurs upon DNA damage-induced cellular stress and whose abrogation by BCL6 diminished transcriptional activation of p53 target genes, including that encoding caspase-1. Conversely, we also found that BCL6 protein is degraded via p53-induced, caspase-mediated proteolytic cleavage, and the formation of a BCL6-p53-caspase-1 complex. Our results suggest that p53 may block oncogenic transformation by decreasing BCL6 stability via caspase-1 up-regulation, whereas aberrant BCL6 expression inactivates transactivation of p53 target genes, either by inhibiting p53 acetylation by p300 or repressing TP53 gene transcription. These findings have implications for B cell development and lymphomagenesis.


Assuntos
Linfócitos B/metabolismo , Caspase 1/sangue , Transformação Celular Neoplásica/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linfócitos B/patologia , Caspase 1/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células HCT116 , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteína Supressora de Tumor p53/genética
11.
Biochem J ; 475(10): 1687-1699, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29669911

RESUMO

Mitochondrial pyruvate carrier (MPC), which is essential for mitochondrial pyruvate usage, mediates the transport of cytosolic pyruvate into mitochondria. Low MPC expression is associated with various cancers, and functionally associated with glycolytic metabolism and stemness. However, the mechanism by which MPC expression is regulated is largely unknown. In this study, we showed that MPC1 is down-regulated in human renal cell carcinoma (RCC) due to strong suppression of peroxisome proliferator-activated receptor-gamma co-activator (PGC)-1 alpha (PGC-1α). We also demonstrated that overexpression of PGC-1α stimulates MPC1 transcription, while depletion of PGC-1α by siRNA suppresses MPC expression. We found that PGC-1α interacts with estrogen-related receptor-alpha (ERR-α) and recruits it to the ERR-α response element motif located in the proximal MPC1 promoter, resulting in efficient activation of MPC1 expression. Furthermore, the MPC inhibitor, UK5099, blocked PGC-1α-induced pyruvate-dependent mitochondrial oxygen consumption. Taken together, our results suggest that MPC1 is a novel target gene of PGC-1α. In addition, low expression of PGC-1α in human RCC might contribute to the reduced expression of MPC, resulting in impaired mitochondrial respiratory capacity in RCC by limiting the transport of pyruvate into the mitochondrial matrix.


Assuntos
Carcinoma de Células Renais/metabolismo , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Metabolismo Energético , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Regiões Promotoras Genéticas , Ácido Pirúvico/metabolismo , Elementos de Resposta , Fatores de Transcrição , Células Tumorais Cultivadas
12.
Diabetes Res Clin Pract ; 140: 107-117, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29601913

RESUMO

AIMS: We evaluated specific alterations in amino acids (AAs) profile in patients with type 2 diabetes mellitus (T2DM) and impaired fasting glucose (IFG) compared with healthy controls. In addition, we tried to find the mechanisms behind these AA alterations. METHODS: Twenty AAs, TNF-α, and IL-6 were analyzed in fasting serum samples from a total of 198 individuals (56 drug-naïve patients with T2DM, 69 patients IFG, and 73 healthy controls). The C2C12 mouse myoblast cell lines were used to examine the changes of MAFbx and MuRF1 expressions, which are muscle specific E3 ligases acting as major mediators of skeletal muscle proteolysis, after development of insulin resistance induced by palmitate treatment. RESULTS: In addition to branched chain amino acids BCAAs, fasting serum AAs such as glutamic acid, lysine, phenylalanine, arginine, alanine, tyrosine, aspartic acid, were higher in patients with T2DM and intermediately elevated in patients with IFG compared with normoglycemic controls. These serum AA concentrations positively correlated with fasting glucose, homeostasis model assessment of insulin resistance (HOMA-IR), and pro-inflammatory cytokines. In addition, HOMA-IR and pro-inflammatory cytokines were two important independent predictors of serum AA levels. In vitro experiments showed that palmitate treatment in C2C12 myotubes induced insulin resistance, increased pro-inflammatory cytokine gene expression, and increased MAFbx gene and protein expression. CONCLUSIONS: The increase in fasting serum AAs can be an early manifestation of insulin resistance. Increased muscle proteolysis induced by insulin resistance and inflammatory cytokines can be a possible mechanism for the rise in serum AA levels.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Citocinas/sangue , Diabetes Mellitus Tipo 2/sangue , Resistência à Insulina , Adulto , Jejum , Feminino , Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Estado Pré-Diabético/complicações , Adulto Jovem
13.
Oncotarget ; 8(47): 82940-82955, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137314

RESUMO

The present study aimed to examine the associations between androgen receptor (AR) and forkhead box A1 (FOXA1) and to investigate clinicopathological features and survival according to both biomarker status in estrogen receptor (ER)-positive breast cancers using in vitro study, patient cohort data, and the cBioPortal for Cancer Genomics and Kaplan-Meier Plotter websites. Experiments using T47D and ZR75-1 demonstrated AR-overexpressing cell lines decreased in cell proliferation through downregulation of ER, but FOXA1 did not change. Knockdown of FOXA1 resulted in a significantly reduced cell viability. Patients with immunohistochemically AR(-)/FOXA1(-) tumor frequently showed node metastasis, high grade, and high Ki-67 proliferation, therefore, significantly worse survival in ER-positive disease. AR and FOXA1 mRNA levels were significantly higher in ER-positive than in ER-negative tumors and AR-low/FOXA1-low tumors showed high grade, frequent basal-like subtype and worse disease-free survival in ER-positive cancers of public gene dataset, similarly to patient cohort results. The Kaplan-Meier Plotter analysis independently validated patients with both low AR/FOXA1 tumor were significantly associated with worse relapse-free survival in ER-positive cancers. This study suggests that distinctive clinicopathological features according to AR and FOXA1 are determined and a lack of both biomarkers is an independent poor prognostic factor in ER-positive tumors.

14.
Biochim Biophys Acta Gene Regul Mech ; 1860(9): 962-972, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28757384

RESUMO

Expression of the POK family protein ZNF509L, and -its S1 isoform, is induced by p53 upon exposure to genotoxic stress. Due to alternative splicing of the ZNF509 primary transcript, ZNF509S1 lacks the 6 zinc-fingers and C-terminus of ZNF509L, resulting in only one zinc-finger. ZNF509L and -S1 inhibit cell proliferation by activating p21/CDKN1A and RB transcription, respectively. When cells are exposed to severe DNA damage, p53 activates PUMA (p53-upregulated modulator of apoptosis) transcription. Interestingly, apoptosis due to transcriptional activation of PUMA by p53 is attenuated by ZNF509S1. Thus we investigated the molecular mechanism(s) underlying the transcriptional attenuation and anti-apoptotic effects of ZNF509S1. We show that ZNF509S1 modulation of p53 activity is important in PUMA gene transcription by modulating post-translational modification of p53 by p300. ZNF509S1 directly interacts with p53 and inhibits p300-mediated acetylation of p53 lysine K382, with deacetylation of p53 K382 leading to decreased DNA binding at the p53 response element 1 of the PUMA promoter. ZNF509S1 may play a role not only in cell cycle arrest, by activating RB expression, but also in rescuing cells from apoptotic death by repressing PUMA expression in cells exposed to severe DNA damage.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Regulação para Baixo/fisiologia , Puma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/fisiologia , Proteína p300 Associada a E1A , Células HCT116 , Células HEK293 , Humanos , Regiões Promotoras Genéticas/fisiologia , Ligação Proteica/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Ativação Transcricional/fisiologia , Dedos de Zinco/fisiologia
15.
Sci Rep ; 7(1): 8856, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821873

RESUMO

Apo-A4 expression was increased in tissues from chronic kidney disease (CKD) patients compared to that in normal kidney tissue. We determined the association of apo-A4 and its regulatory signals following acute kidney injury and elucidated the effects of apo-A4 on cell signaling pathways related to kidney injury in vitro and in vivo. Tumor necrosis factor (TNF)-α, which causes inflammatory cell injury, induced significantly increased expression of apo-A4 protein levels, and these levels were related to pro-inflammatory acute kidney injury in human kidney cells. Apo-A4 expression was also increased in experimented rat kidney tissues after ischemic reperfusion injury. The expression of tumor necrosis factor receptor (TNFR) 2 was increased in both kidney cell lines and experimented rat kidney tissues following acute kidney injury. The expression of apo-A4 and TNFR2 was increased upon treatment with TNF-α. Immunohistochemistry revealed positive apo-A4 and TNFR2 staining in ischemic reperfusion injury rat kidneys compared with levels in the sham operation kidneys. After neutralization of TNF-α, NF-κB expression was only observed in the cytoplasm by immunofluorescence. Therefore, the apo-A4 expression is increased by stimulation of injured kidney cells with TNF-α and that these effects occur via a TNFR2-NFκB complex.


Assuntos
Apolipoproteínas A/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Apolipoproteínas A/genética , Linhagem Celular , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Expressão Gênica , Humanos , Inflamação/etiologia , Inflamação/patologia , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Masculino , Camundongos , Modelos Biológicos , Insuficiência Renal/etiologia , Insuficiência Renal/metabolismo , Insuficiência Renal/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
16.
Neuro Oncol ; 19(2): 197-207, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27571886

RESUMO

Background: Deprivation of tumor bioenergetics by inhibition of multiple energy pathways has been suggested as an effective therapeutic approach for various human tumors. However, this idea has not been evaluated in glioblastoma (GBM). We hypothesized that dual inhibition of glycolysis and oxidative phosphorylation could effectively suppress GBM tumorspheres (TS). Methods: Effects of 2-deoxyglucose (2DG) and metformin, alone and in combination, on GBM-TS were evaluated. Viability, cellular energy metabolism status, stemness, invasive properties, and GBM-TS transcriptomes were examined. In vivo efficacy was tested in a mouse orthotopic xenograft model. Results: GBM-TS viability was decreased by the combination of 2DG and metformin. ATP assay and PET showed that cellular energy metabolism was also decreased by this combination. Sphere formation, expression of stemness-related proteins, and invasive capacity of GBM-TS were also significantly suppressed by combined treatment with 2DG and metformin. A transcriptome analysis showed that the expression levels of stemness- and epithelial mesenchymal transition-related genes were also significantly downregulated by combination of 2DG and metformin. Combination treatment also prolonged survival of tumor-bearing mice and decreased invasiveness of GBM-TS. Conclusion: The combination of 2DG and metformin effectively decreased the stemness and invasive properties of GBM-TS and showed a potential survival benefit in a mouse orthotopic xenograft model. Our findings suggest that targeting TS-forming cells by this dual inhibition of cellular bioenergetics warrants expedited clinical evaluation for the treatment of GBM.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Desoxiglucose/farmacologia , Glioblastoma/tratamento farmacológico , Metformina/farmacologia , Animais , Antimetabólitos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Quimioterapia Combinada , Metabolismo Energético/efeitos dos fármacos , Glioblastoma/metabolismo , Glioblastoma/patologia , Glicólise/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Nus , Fosforilação Oxidativa/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biochim Biophys Acta ; 1859(11): 1429-1439, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27646874

RESUMO

Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases that play roles in cell proliferation, migration, differentiation, angiogenesis, and apoptosis. The expression of MMP gene is tightly regulated and shows cell- and tissue-specific expression patterns. Despite their differential expression, MMP genes have AP-1 (activator protein-1) binding elements within their promoters. Interestingly, c-JUN phosphorylation by cytokine signaling decreased its interaction with NCoR, but increased its interaction with p300, resulting in activation of MMP gene transcription. Here, we found that Zbtb7c (Kr-pok) is a critical component of a transcriptional repressor complex containing c-Jun and NCoR. c-Jun, bound at AP-1, interacts with Zbtb7c, which in turn recruits an NCoR/Hdac3 complex to repress several Mmp (-8, -10, -13, and -16) genes. The molecular interaction between c-Jun and Zbtb7c also prevents phosphorylation of c-Jun by p-Jnk, However, Zbtb7c phosphorylation by p-Jnk (induced by TNFα), and its (Zbtb7c) subsequent degradation by the ubiquitin-mediated proteasomal pathway, leads to c-Jun phosphorylation by p-Jnk. Promoter-bound p-c-Jun then recruits the coactivator p300 to upregulate Mmp gene. Overall, these findings show that Zbtb7c is a key molecule that recruits an NCoR/Hdac3 complex to inhibit phosphorylation of c-Jun, and thereby repress Mmp gene expression.


Assuntos
Metaloproteinases da Matriz/genética , Proteínas/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Células NIH 3T3 , Regiões Promotoras Genéticas , Proteínas/química , Proteólise , Homologia de Sequência de Aminoácidos , Fator de Necrose Tumoral alfa/administração & dosagem , Ubiquitinação
18.
Mol Cell Endocrinol ; 431: 36-45, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27151833

RESUMO

Recent advances in next-generation sequencing have revealed a variety of long noncoding RNAs (lncRNAs). However, studies of lncRNAs are at a very early stage, our knowledge of the biological functions and clinical implications remains limited. To investigate the roles of lncRNAs in thyroid cancers, we verified 56 lncRNAs identified as potential cancer-promoting genes in a previous study that analyzed 2394 tumor SNP arrays from 12 types of cancer. Based on verified sequence information in NCBI and Ensembl, we ultimately selected three candidate lncRNAs for detailed analysis. One of the candidates, LOC100507661, was strongly upregulated in thyroid cancer tissues relative to paired contralateral normal tissue. LOC100507661 was easily detectable in papillary and anaplastic thyroid cancer cell lines such as TPC1, BCPAP, C643, and 8505C, but not in the follicular thyroid cancer cell line FTC133. Stable overexpression of LOC100507661 promoted cell proliferation, migration, and invasion of thyroid cancer cells. Lymph node metastasis and BRAF V600E mutations were more frequent in papillary thyroid cancers with high LOC100507661 expression. Our data demonstrate that LOC100507661 expression is elevated in human thyroid cancer and may play a critical role in thyroid carcinogenesis.


Assuntos
RNA Longo não Codificante/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Regulação para Cima/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metástase Linfática/genética , Polimorfismo de Nucleotídeo Único/genética
19.
Biochem Biophys Res Commun ; 474(3): 547-553, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27114304

RESUMO

Clear cell renal carcinoma (RCC), the most common malignancy arising in the adult kidney, exhibits increased aerobic glycolysis and low mitochondrial respiration due to von Hippel-Lindau gene defects and constitutive hypoxia-inducible factor-α expression. Sirt3 is a major mitochondrial deacetylase that mediates various types of energy metabolism. However, the role of Sirt3 as a tumor suppressor or oncogene in cancer depends on cell types. We show increased Sirt3 expression in the mitochondrial fraction of human RCC tissues. Sirt3 depletion by lentiviral short-hairpin RNA, as well as the stable expression of the inactive mutant of Sirt3, inhibited cell proliferation and tumor growth in xenograft nude mice, respectively. Furthermore, mitochondrial pyruvate, which was used for oxidation in RCC, might be derived from glutamine, but not from glucose and cytosolic pyruvate, due to depletion of mitochondrial pyruvate carrier and the relatively high expression of malic enzyme 2. Depletion of Sirt3 suppressed glutamate dehydrogenase activity, leading to impaired mitochondrial oxygen consumption. Our findings suggest that Sirt3 plays a tumor-progressive role in human RCC by regulating glutamine-derived mitochondrial respiration, particularly in cells where mitochondrial usage of cytosolic pyruvate is severely compromised.


Assuntos
Carcinoma de Células Renais/metabolismo , Proliferação de Células , Glutamina/metabolismo , Neoplasias Renais/metabolismo , Proteínas Mitocondriais/metabolismo , Sirtuína 3/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Oxirredução , Células Tumorais Cultivadas
20.
Nucleic Acids Res ; 43(3): 1609-25, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25609694

RESUMO

The NF-κB is found in almost all animal cell types and is involved in a myriad of cellular responses. Aberrant expression of NF-κB has been linked to cancer, inflammatory diseases and improper development. Little is known about transcriptional regulation of the NF-κB family member gene RelA/p65. Sp1 plays a key role in the expression of the RelA/p65 gene. ZBTB2 represses transcription of the gene by inhibiting Sp1 binding to a Sp1-binding GC-box in the RelA/p65 proximal promoter (bp, -31 to -21). Moreover, recent studies revealed that RelA/p65 directly binds to the peroxisome proliferator-activated receptor-γ coactivator1α (PGC1α) to decrease transcriptional activation of the PGC1α target gene PDK4, whose gene product inhibits pyruvate dehydrogenase (PDH), a key regulator of TCA cycle flux. Accordingly, we observed that RelA/p65 repression by ZBTB2 indirectly results in increased PDK4 expression, which inhibits PDH. Consequently, in cells with ectopic ZBTB2, the concentrations of pyruvate and lactate were higher than those in normal cells, indicating changes in glucose metabolism flux favoring glycolysis over the TCA cycle. Knockdown of ZBTB2 in mouse xenografts decreased tumor growth. ZBTB2 may increase cell proliferation by reprogramming glucose metabolic pathways to favor glycolysis by upregulating PDK4 expression via repression of RelA/p65 expression.


Assuntos
Proteínas Serina-Treonina Quinases/genética , Proteínas Repressoras/fisiologia , Fator de Transcrição RelA/genética , Transcrição Gênica , Sequência de Bases , Linhagem Celular , Primers do DNA , Humanos , Regiões Promotoras Genéticas , Piruvato Desidrogenase Quinase de Transferência de Acetil , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição Sp1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...